Data requirements for stochastic solvers

H.I. Gassmann Dalhousie University Halifax, Canada

Overview

Introduction
Algorithms
Data structures
Conclusions

Multistage stochastic linear program

Any data item with nonzero subscript may be random (including dimensions where mathematically sensible) \sim stands for arbitrary relation (\leq , =, \geq)

Constraints involving random elements

 $A_{t0}x_0 + A_{t1}x_1 + \mathbf{K} + A_{tt}x_t \Delta b_t$

Δ means ~ with probability 1
 Or with probability at least β
 Or with expected violation at most V

Problem classes

A Recourse problems

- All constraints hold with probability 1
- \mathfrak{A} Chance-constrained problems
 - Typically single stage
- **Ω Hybrid problems**
 - Recourse problems including probabilistic constraints (VaR) or integrated chance constraints (CVaR)
 - Regulatory necessity
 - Often modelled using integer variables and/or linking constraints

Algorithms

 ${\it \Omega}$ Direct solution of the deterministic equivalent

- "Curse of dimensionality"
- \mathfrak{A} Decomposition
 - Recognize structure
 - Repeated calls to solver with different data
 - Sampling of scenarios during algorithm
 - stochastic decomposition
 - successive approximation
 - "EVPI relaxation"
 - Scenario generator between AML and solver

Data Structures

 ${\it s}_{\it o}$ Often O(10⁶) variables and constraints ${\it s}_{\it o}$ Most compact representation possible

- Packed matrix format is insufficient
- Blocks corresponding to nodes in the event tree
- Change blocks if problem dimensions are deterministic
- $A_{stj} = A_{st0} + \Delta A_{stj}$ (addition or replacement)

Conclusions

ລ Stochastic extensions are difficult ລ Time is right